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The properties of fluctuations in/z space in or outside thermal equilibrium are 
obtained by solving hierarchies of equations derived either from the Liouville or 
the Master equation. In particular we study the one-, two-, etc., time correlation 
functions that describe the spatial and temporal behavior of the fluctuations in # 
space. Explicit solutions are obtained for a dilute gas. The Langevin approach is 
briefly discussed. Our results are compared with those obtained in the extensive 
literature, which is reviewed in some detail. 
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1. I N T R O D U C T I O N  

In  this p a p e r  we der ive  in a sys temat ic  way  the proper t ies  o f /~  space  
f luc tuat ions  at  equal  or  different  t imes in gases in or  outs ide  the rmal  
equi l ibr ium.  In  fact  we develop  a h ie ra rchy  m e t h o d  in which we der ive a n d  
solve h ierarchies  of coup led  equat ions  for these f luctuat ions,  ob t a ined  
either f rom the Liouvi l le  equa t ion  or  f rom a mas te r  equat ion.  

The  h ie ra rchy  of equat ions  der ived  f rom the Liouvi l le  equa t ion  can  be  
solved using s t a n d a r d  me thods  of kinet ic  theory.  W e  will t rea t  here in 
par t i cu la r  the case of a gas of h a r d  spheres.  This  is done  solely for  the 
purpose  of a s impler  a n d  more  t r anspa ren t  t rea tment ,  since in the ha rd -  
sphere case the s t rong in te)par t ic le  in te rac t ion  can  be taken  into accoun t  
directly,  while for  o ther  s t rong shor t - range  in terac t ions  r e summat ions  have  
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to be performed. Nevertheless our results can readily be generalized to 
systems with more realistic interparticle interactions. 

The hierarchy of equations derived from the master equation for a 
dilute gas gives a description of equal or unequal time fluctuations only on 
a scale large compared to the range of the interparticle forces. This master 
hierarchy is valid for strong short-range interactions in general and can be 
solved by the same simple method as used in the kinetic theory of hard 
spheres. 

In this way we will obtain from a unified point of view many results 
that have been derived and rederived in the literature over and over again. 
In order to compare more completely with the existing literature, we discuss 
also the Langevin approach for deriving equations for fluctuations which 
uses a fluctuating Boltzmann equation as a starting point. 

We will restrict ourselves to concrete results for a classical dilute gas, 
with short-range additive intermolecular forces. The gas may be in equilib- 
rium or not in equilibrium; in the latter case the deviations from equilib- 
rium are supposed to be small so that only terms linear in the gradients of 
the local density, energy, and velocity have to be taken into account. 
Furthermore, we are interested only in fluctuations on a spatial scale that is 
much larger than the range of the intermolecular forces, but not necessarily 
larger than the mean free path. Therefore, we will study fluctuations in/~ 
space, although in case the scale of the fluctuations is much larger than the 
mean free path hydrodynamical equations can be used. 

The hierarchy method has been traditionally developed for the calcula- 
tion of distribution functions, as in the derivation of the Boltzmann 
equation from the Liouville equation, or for the computation of equilibrium 
time correlation functions, as for the evaluation of the Green-Kubo formu- 
las for the transport coefficients. Here we show that this same method can 
be used to obtain multitime distribution and correlation functions both in 
equilibrium and nonequilibrium. Since these multitime correlation func- 
tions determine all the properties of the fluctuations in the gas, this method 
furnishes a theory of fluctuations at the same time. 

A interesting result is that the equal time pair correlation function of a 
gas, not in equilibrium 3 exhibits long range correlations that decay only 
proportional to the inverse distance between two particles. This long range 
correlation in the pair correlation function has been noticed before by 
various authors as will be discussed in Section 3. It contributes to the 
correlation between density fluctuations and, thus, influences the light 
scattering of a gas not in equilibrium. The theory also suggests that not 

3In equilibrium the pair and higher correlation functions vanish at low densities and distances 
large compared to the range of the forces. In our considerations we use systems in which only 
the average number of particles is given (i.e., described by a grand canonical ensemble in the 
equilibrium case), so that the correlation functions do not have a long range part of O(1 /V) .  
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only the pair correlation function but also all higher-order correlation 
functions exhibit long-range correlations in a nonequilibrium gas. 

The plan of the paper is as follows. In Section 2 we develop the 
hierarchy method in kinetic theory for the one- and two-time distribution 
and correlation functions. Details of the derivation of the hierarchies are 
discussed in Appendix A. In Section 3 we solve the hierarchy equations in a 
systematic fashion for a dilute gas and for distances large compared to the 
range of the interparticle forces. In Section 4 we sketch how the methods 
employed in kinetic theory can be used in a completely analogous fashion 
in the master equation approach. As a typical example, we treat the equal 
and unequal time fluctuations in the occupation numbers of discrete cells 
in velocity space. In Section 5 we sketch the Langevin approach to the 
calculation of fluctuations. Here we start from a fluctuating Boltzmann 
equation and make the usual random and Gaussian assumptions on the 
statistical properties of the fluctuating force in this equation. In order to 
obtain an explicit expression for the correlation strength of the fluctuating 
force additional data are required that can be obtained from the hierarchy 
methods. A comparison of our results with corresponding results from the 
literature is made at the end of Sections 3, 4, and 5. In particular a proof 
for the equivalence of the explicit expressions given here and in the 
literature for the equal time correlation functions is presented in Appendix 
D. 

Special applications of the hierarchy method are discussed in two 
Appendixes: the computation of the fluctuations of a tagged particle in a 
dilute gas not in equilibrium in Appendix B and the computation of a 
three-time correlation function, which gives the correlations between fluctu- 
ations at three different times, in Appendix C. 

2. HIERARCHIES FOR DISTRIBUTION AND CORRELATION 
FUNCTIONS 

As pointed out before, we will illustrate the derivation of the 
hierarchies of equations that hold for the distribution or the correlation 
functions on the special case of a system of hard spheres. The case of a 
smooth potential was discussed in another publication. ~1) 

A hierarchy for the distribution functions of a hard-sphere system can 
be derived from that for the microscopic densities ~(lt), ~(12t) . . . .  
defined by 

N 
~ ( l t )  ~ ~ ( X I / )  = E ~(Xi( t )  -- XI) 

i= l  
N N (2.1) 

+ ( 1 2 / )  ~--- l~(XlX2t ) = E E ~(g i ( t )  - x1)(~(Sj ( t )  - x2) e tc .  
i~j  
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by averaging over an appropriate initial ensemble. In (2.1) the lower-case 
variables x i =- (ri, vi) (i = 1, 2 , . . . ,  N) are field variables while the capital 
variables Xi(t ) =--01i(t),Vi(t)) represent the phase of the ith particle of the 
system at time t in F space. Only the dependence on the field variables is 
indicated explicitly in the qJ functions. 

A hierarchy for the ff functions in the case of a system of hard spheres 
can be derived using pseudo-streaming operators, (2) leading to the Kli- 
montovich hierarchy (3) for hard spheres as shown in Appendix A: 

[ ~t  + L0(1 ) ]~( l t )  = f d2 T_ (12)qJ(12t) (2.2a) 

[ ~ t  +L0(12 ) - T _ ( 1 2 ) ] ~ ( 1 2 ` ) = f d 3 ( l + P , 2 ) T  (12)~(123,)etc.  

(2.2b) 
Here the operator L0(1 ) is defined by 

0 (2.3) L0(1 ) ~ Lo(x,) = v, " -~l 

while L0(12 ) -- L0(1 ) + L0(2 ). The binary collision operator T (12) is given 
by 

T_ (12) = a 2 (  dO Iv,2. Ol[ ~(r,2 - oO)b a - 8(r12 + o0)] (2.4a) 
dVl2" ~ ~ 0 

where o is the diameter of the hard spheres and ~ a unit vector that 
characterizes the geometry of the binary collision between the two colliding 
spheres 1 and 2 at contact. The operator ba replaces the velocities v I and v 2 
of the two spheres before the collision by those after the collision v], v~: 

b~vl = r = v l  - a ( a .  v12) 
(2.4b) 

bay 2 = v~ --  v 2 + o ( t~ -  v12 ) 

where v~z = v 1 -v2 .  The permutation operator P12 interchanges the labels 
of the particles 1 and 2. 

The one-time distribution functions are averages of the + functions 
over the phases X 1 . . .  X N, taken over some initial ensemble D(1 . . .  N, 0): 

f ( l t )  =--f(x,t) = ( + ( l t ) )  
(2.5) 

f(12t) = f (x ,xz t  ) = (qJ(12t)) etc. 

where 

( q J ( i . . . j t ) ) = ~ N f  d X , . . ,  f d X N D ( X , . . . X N ,  O ) , ( i . . . j t )  (2.6) 

Here we consider a grand ensemble in which only the average number of 
particles is defined and the bulk limit is understood to have been taken on 
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the fight-hand side of (2.5). The distribution function f(1 t) is the probabil- 
ity density to find a particle in phase 1 = x I at time t, etc. 

A hierarchy for the one-time distribution functions can be obtained 
directly by averaging the hierarchy (2.2) with D(X l . . .  XN, 0). The result is 
the following B-B-G-K- Y hierarchy 4 for a system of hard spheres (z4'5) : 

Lo(1)]f(lO= f d2T_(12)f(12t) 
(2.7) 

L0(12) - f_(12)]f(12t)=f d 3 ( l +  " ,2)T_ (13)f(123t) etc. 

A hierarchy for two-time distribution functions f(1 t, l 't '), f(12t, l 't '), 
etc. can be derived in a similar fashion from (2.2). For smooth potentials 
this has been done by Tolmachev, (7) Vineyard, (8) and others, (9-1~) while 
for hard spheres we refer to Refs. l, 12, and 13. The two-time distribution 
functions are defined by the relations 

f l i t ,  l ' t ' )  =f (x , t ,  xlt'  ) = (~p(1 t )~ ( l ' t ' ) )  
(2.8) 

f(12t, l ' , t ' )  =--f(xlx2t, xlt' ) = (+(12t)~p(l 't ')) etc. 

where the averages on the right-hand side are defined by Eq. (2.6). Here 
f ( l t ,  l ' t ')  is the probability density to find a particle in the phase x~ at time 
t and a particle (the same or another) in the phase x~ at time t' and 
similarly for f(12t, l 't '), etc. One verifies easily from (2.1), (2.5), and (2.8) 
that 

f ( l t ,2 t )  =f (12 t )  + 6(1 - 2 ) f ( l t )  (2.9) 

A hierarchy of equations for f(1 t, l 't '), etc., can be obtained in similar way 
as for f ( l t ) ,  etc., before. As shown in Appendix A, one finds for t > t' 

[ + L0(1)lf(l', l'C) 

+ L o ( 1 2 )  - T_(12)lf(12t, l't' ) 

= f d2 T_ (12)f(12t, l ' t ' )  (2.10) 

= f d 3 ( 1  + P~2)T_ (13)f(123t, l ' t ' )e tc .  

In this same fashion hierarchies can be derived for multitime distribution 
functions in general. 

In connection with the weakening of correlations between groups of 
particles with increasing spatial separation and also for the discussion of 

4This hierarchy is valid only for t > 0. It is interesting to observe that for t < 0, one obtains a 
"backward" hierarchy with T replaced by -T+ as follows from Appendix A. In the 
low-density approximation, discussed in Section 3, the first equation of the backward 
hierarchy reduces to the "backward" or "anti"-Boltzmann equation discussed by Cohen and 
Berlin.(2s) 
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correlations between fluctuations it is convenient to introduce a set of 
cluster functions: the correlation functions. 

The one-, two-, multitime correlation functions are defined in a way 
analogous to the Ursell functions in equilibrium statistical mechanics: 

f(12t) = f ( l t ) f ( 2 t )  + g(120 

f(123t) =f(l t) f (2Qf(3t)  + f(lt)g(23t) + f(2t)g(13t) (2. t l )  

+ f(3t)g(12t) + g(123t) etc. 

for the one-time correlation functions g(12t), g(123t), etc., and by 

f ( l t ,  l ' t ' )  = f( l t ) f ( l ' t ' )  + C(lt, l ' t ' )  

f(12t,  l ' t ' )  =f(l t ) f (2t ) f ( l ' t ' )  +f(lt)C(2t, l ' t ' )  +f(2t)C(lt ,  l ' t ' )  (2.12) 

+f(l't ')g(12t) + C(12t, l ' t ' )  etc. 

for the two-time correlation functions C(lt, l 't '), C(12t, l 't '), etc. 
The g and C functions will have a cluster property, i.e., decrease for 

separated configurations of the particles they depend on if the separation 
between the particles exceeds a correlation length. These functions also 
determine the correlations between microscopic density fluctuations. For, if 
one introduces ~( l t )=qJ ( l t ) - (qJ ( l t ) )=  ~ ( l t ) - f ( l t )  as the density 
fluctuation at the point x I in tt space, then its unequal time correlation 
function is given by 

(&p(1 t)SqJ(l't ')) = f ( l t ,  l ' t ' )  - f ( l t ) f ( l ' t ' )  = C( l t ,  l ' t ' )  (2.13) 

while the equal time correlation function is given by 

(6+(lt)SqJ(2t)) = C( l t , 2 t )  = 3(1 - 2 ) f ( l / )  + g(12t) (2.14) 

as follows from (2.9) and (2.12). 
A hierarchy for these correlation functions follows directly from (2.10) 

-(2.12): 

[ + g(l , l 

+ f  d3(1 + P12)T_(13)[(1 + P,3) 

• f(3t)g(12t) +g(123 t ) ]  etc. (2.15b) 



Nonequilibrlum Fluctuations in t~ Space 159 

for the one-time correlation functions and 

[ ~ t +  Lo(1 ) lC(lt, l 't ') -- f d2 T_ (12)(1 + P,2)f(2t)C(lt, l 't ') 

+fd2 T (12)c(121, l 't ') etc. (2.16) 

for the two-time correlation functions for t > t'. 
We note that each term in Eq. (2.15) or (2.16) is connected in the sense 

that all particle labels in each term are interconnected by T operators, g or 
C functions. 

3. LOW-DENSITY RESULTS 

In this section we want to derive kinetic equations for the correlation 
functions for fluctuations in/~ space at equal and unequal times in a dilute 
gas in or outside thermal equilibrium. We are interested here in particular 
in correlations of fluctuations at relative distances large compared to the 
hard-sphere diameter o but not necessarily large compared to the mean free 
path. Our starting point is the hierarchies of equations for the distribution 
and correlation functions derived in the previous section. Each hierarchy 
forms a set of coupled equations, where the right-hand side of each 
equation in the hierarchy contains a distribution or correlation function 
that involves one more particle than appears on the left-hand side of the 
equation. In order to obtain a set of closed equations for the distribution or 
correlation functions the hierarchy equations have to be decoupled. Thereto 
the same methods can be applied that have been used before to obtain 
closed kinetic equations for nonequilibrium distribution functions and 
equilibrium time correlation functions. 

For a smooth potential many methods are available to achieve this. 
Although these methods could and many have been applied to the case of 
interest here, they are unfortunately rather complicated. However, for the 
special case of hard spheres a simple, straightforward method exists to 
derive kinetic equations. This method was introduced by Ernst and Doff- 
man (t3) for the study of the two-time hierarchy in equilibrium, and will be 
applied here to the hierarchies (2.15) and (2.16), derived in the previous 
section, in order to illustrate how these equations can be solved. 

The main idea is that kinetic equations for the correlation functions 
can be derived correct to increasing orders in the density by neglecting 
correlation functions involving an increasing number of particles. First, in 
Eq. (2.15a) the ansatz is made, which will be verified later, that T (12) 
g(12t) is of higher order in the density than T (12)f(lt)f(2t) and that, 
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similarly, in Eq. (2.15b), T_ (13)g(123t) is of higher order in the density 
than T_ (13)f(3t)g(12t)_ for all phases 2. For a kinetic equation to lowest 
order in the density T_ (12)g(12t) and T_ (12)g(123t) can therefore be 
neglected in Eq. (2.15). In addition, since we are only interested in distances 
r12 = I r l -  ral >> o, we can make a further simplification by replacing 
T_ (12) by a point T operator defined by 

7~(12) = 8(r,2)T0(12 ) = 8(r,2)azf a8 Iv,2.81[b a - 1] (3.1) 
avl2 .  ~ > 0 

T(12) follows from T_ (12) by ignoring the 08 in the delta functions on the 
right-hand side of Eq. (2.4a), which implies that we neglect the difference in 
position between the two colliding particles. 

Using the above in Eq. (2.15a) leads immediately to the nonlinear 
Boltzmann equation for f(l t) :  

[ ~ t  + Lo(1)]f(lt)= f d2T(12)f(lt)f(2t) (3.2) 

while Eq. (2.15b) yields the following equation for the equal time correla- 
tion function g(12t): 

[ ~-~ + L( l t )  + L(2t)]g(12t)= T(12)f(lt)f(2t) (3.3) 

where (i = 1, 2) 
L(it) = Lo(i ) - A(it) (3.4a) 

with 
f A 

A(it) = d3 T(i3)(1 + e,3)f(3t) (3.4b) 

Using (2.14), (3.2), and (3.3), the following equation for C(lt,2t) can be 
obtained valid for r12 >> o: 

with 

F(12t) = - [A(lt) + A(2t)]8(l - 2)f ( l t )  

+ 8(1 - 2 ) f  a3 T(13)f(lt)f(3t) + T(12)f(lt)f(2t) (3.5b) 

which is our main result for the correlations between equal time fluctua- 
tions in a dilute nonequilibrium gas. Both in Eq. (3.3) and in Eq. (3.5) the 
f(it) (i = 1,2) have to be found from Eq. (3.2). In thermal equilibrium, 
when f~q(i) is the Maxwellian velocity distribution function, the last two 
terms on the fight-hand side in Eq. (3.5b) vanish, i.e., 

I'eq(12 ) - - [Aeq(1 ) + Aeq(2 ) ]8(1 - 2)f~q(1) (3.6) 
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and (i = 1, 2): 

Aeq(i ) = a3 T(i3)(1 + Pi3)feq(3) (3.7) 

We emphasize that the contribution of g(12t) to C(12t) [cf. Eq. (2.14)] has 
been kept in Eq. (3.5) and is in general not of higher order in the density as 
one might think. (~4) For, the space and time derivatives of 8 ( 1 -  2)f(lt) 
and g(12t) are of the same order in the density for linear deviations from 
equilibrium as follows immediately from the last two terms on the right- 
hand side of Eq. (3.5b). For later use we also note that the solution of Eq. 
(3.3) for g(12t) can easily be found for the special case of a stationary 
nonequilibrium state. In that case fss(1) is independent of t and can be 
found using the Chapman-Enskog procedure in Eq. (3.2), while the station- 
ary pair correlation function gss(12) follows from (3.3) to be (14) 

gss(12) = [Ls~(1 ) + Ls~(2)]-~f(12)fss(1)f~s(2) (3.8) 

where Lss(i ) (i = 1, 2) is given by Eq. (3.4) with f(3t) replaced by fss(3). 
Using (3.8) for g~(12) in Eq. (2.15a) in the case of a stationary state or 

the corresponding expression for g(12t) in the general nonequilibrium case, 
one can verify the ansatz made above for the solution of the hierarchy 
(2.15). 

Finally, we determine the low-density equations for the correlation 
function C(1 t, l't ') describing unequal time fluctuations for distances large 
compared to a. This equation is obtained from Eq. (2.16) by replacing 
T (12) by 7~(12) and in the spirit of the above-mentioned solution method, 
neglecting C(12t, l't ') on the right-hand side. For t > t' one obtains then 
the equation 

[ -~t + L(lt) lC(lt, l' t') = O (3.9) 

This equation for the unequal time correlation function C(lt, l 't ') can be 
solved with the equal time correlation function C(lt, l't), given by Eq. 
(2.14), as initial value. We determine the solution of Eq. (3.9) for the special 
case of a stationary nonequilibrium state where C(lt + z ,2 t )=  C~s(12~-). 
Using the Laplace transform of Eq. (3.9) combined with (3.8) and (2.14), 
one obtains for ~- > 0 

Css(12z) = [z + L~(1) ] - ' [  8(1 - 2)f~(1) 

+ (L~(1) + L~(2)}-'r (3.10) 

where z is the Laplace transform variable. 
One can generalize systematically the low-density results obtained 

above to higher densities, as has been done for distribution functions and 
time correlation functions in equilibrium. Thus in particular contributions 
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due to three-body collisions, rings, etc., to C(1 t, 2t) and C(l t ,  l ' t ' )  could be 
obtained. We will not do so, since the main purpose of this paper is to 
illustrate that the methods used before to derive kinetic equations for 
nonequilibrium distribution functions and equilibrium time correlation 
functions can be extended straightforwardly to equilibrium or nonequilib- 
rium multitime correlation functions. 

We now compare the results obtained in this and the previous section 
on the basis of kinetic equations with those obtained in the literature. In 
doing so, one should bear in mind that our equations obtained for hard- 
sphere potentials can be generalized to smooth potentials by replacing (1) 
the operator T(12) in (3.1) with 

7~(12) = 8(rl2)T0(v,v2)= 8 ( r l 2 ) f d ~ I ( g , x ) ( b  ~ - 1) (3.11) 

where g = [v I -v21, I ( g , x )  is the differential scattering cross section, d r  
= sin X dx  dq~ with X the scattering angle in the binary collision between the 
particles 1 and 2, and q~ the azimuthal angle of the plane in which the 
scattering takes place. The operator b e acts only on the velocities v i such 
that b~v,. = v~ (i = 1,2), where the primed velocities are the velocities of the 
particles after the binary collision. For the special case of hard spheres 
I (g ,  X) is constant and independent of g. 

Equal time correlation functions g(12t) and C( l t ,2 t )  for smooth 
potentials have been discussed by many authors. (15-19) Explicit equations 
equivalent to our equations (3.3)-(3.5) 5 have been derived by Kogan (17) on 
the basis of Bogolubov's functional method, by Blatt eta/.  (16) and Kritz et 
al. (58) using a hierarchy method essentially equivalent to that of Refs. 9 and 
10, and by Ronis et al.(19)'6 using a binary collision expansion. The results 
given by Morita et al., (18) obtained on the basis of the BBGKY hierarchy 
by a scaling method, differ from ours, however. 7 

An interesting feature of Eq. (3.3) or (3.5) for the nonequilibrium equal 
time pair function g(12t) or C(1 t, 2t) in a dilute gas is that its solution has a 
long range in certain directions, where it behaves as 1/r12. This was already 
noticed by Ludwig (2~ in 1962, but has been appreciated and fully investi- 
gated only recently by Onuki, (21) Ronis et al. ,(22,19) Kirkpatrick et al.,(14,23) 
and Tremblay, Siggia, and Arai. (24) The asymptotic behavior of the pair 
correlation function is not 1/rl2 but will have a different form that falls off 

5In Refs. 16 and 17 the right-hand side of Eq. (3.3) is replaced by the low-density limit of 
0(12)[f(1 t)f(2t)+ g(12t)], where 0(12)= m-I(O/~v I - O/~v2). Oq~(r12)/~r12 and 4,(r12 ) is the 
intermolecular pair potential. In the limit of hard spheres and low densities this leads to the 
right-hand side of our Eq. (3.3). 

6In Ref. 19 gs~(12) of Eq. (3.8) is given to linear order in the deviations from equilibrium, in 
which case the Lss(i) (i = 1, 2) can be replaced by its equilibrium expression. 

Vln Ref. 18 an inconsistent expression F(12t) is obtained since the term T(12)f(lt)f(2t), which 
is of the same order as the other terms in Eq. (3.5b), is missing. 
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faster than l/r]2 and involves the gradients in the local temperature or 
velocity of the system. It can be obtained using the method of Ernst et 
a/. (25) developed for the case of a shear flow. The directions and the 
strength of these long-range correlations depend on the gradients in the 
system. 

For the two-time correlation function C(l t ,  l ' t ' )  most authors derive 
results for thermal equilibrium. (7'26'27'1~ They obtain Eq. (3.9) with L(1 t) 
replaced by Leq(1 ) = L0(1 ) -Aeq(1),  defined in Eqs. (2.3) and (3.7), and 
solve it with the first term on the fight-hand side of Eq. (2.14) as an initial 
condition, where f ( l t )  is replaced by feq(l). Tolmachev (7) applied Bogolu- 
boy's functional method, Van Leeuwen and Yip (26) a diagrammatic 
method combined with the binary collision expansion, and Chappell (27) as 
well as Saleeby and Lewis (1~ a hierarchy method (35'9'1~ to solve the 
two-time hierarchy for a smooth potential. Their results agree with those 
obtained here. Van Beijeren et al. (6) give a rigorous derivation of Eq. (3.9) 
for hard spheres for times smaller than the mean free time in the so-called 
Grad limit, using Lanford's method of deriving the Boltzmann equation. (29) 
Spohn (3~ has recently generalized these results to the case of a hard-sphere 
gas not in thermal equilibrium and his results agree with ours, as will be 
shown in Appendix D. 

The two-time correlation function for the nonequilibrium case has 
been considered in Refs. 9, 12, and 31. Hinton (9) uses the hierarchy method 
for a smooth potential to derive an equation for C( l t ,  l ' t ' )  equivalent to 
(3.9). However, he solves this equation with only the first term on the 
right-hand side of Eq. (2.14) as an initial condition for C(l t ,2 t ) .  The 
neglect of g(12t) in (2.14) leads to unphysical results in the case of a gas not 
in equilibrium, as has been discussed in Refs. 1 and 14. Gantsevich et al. (31) 
develop a kinetic method to obtain unequal time fluctuation correlations 
between electrons in a semiconductor in a stationary state. When applied to 
dilute gases their method leads to our Eqs. (3.3)-(3.9) for that case. It is not 
possible to compare our results with those of Tsuge and Sagara (12) because 
these authors do not derive a closed equation 8 for the unequal time 
correlation function C(lt ,  l ' t '),  nor do they indicate how to obtain the 
equal time correlation function, which is needed as an initial value for such 
an equation. 

The hierarchy method used here to obtain results for the one- and 
two-time correlation functions can easily be specialized to the case of a test 
particle in a dilute gas or generalized to the case of multitime correlation 

8In deriving an equation for C(lt, l't') valid for low densities, Tsug~ and Sagara do not 
neglect the full C(12t, l't') as we do, but keep the contributions to C(12t, l't') for which the 
particle at the field point 1' is identical to either the particle at 1 or at 2. This is inconsistent 
since both contributions are higher-order density corrections to Eq. (3.9). 
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functions. The test particle case is discussed in Appendix B, while results 
for the three-time correlation function are obtained in Appendix C. 

Fluctuations of a test particle have been considered by many authors 
for plasmas (32'33) as well as for dilute gases in equilibrium ~26'34'27'1~ or 
not in equilibrium/9'~2) Our results agree with those obtained in Refs. 6, 9, 
10, 26, and 27. The difference between these results and those of Ref. 34 
has been explained in Ref. 9. The difference with Ref. 12 is discussed in 
Appendix A. 

Our result for the three-time correlation function reduces for the case 
of thermal equilibrium to that derived by Dufty ~35) on the basis of a 
different method. 

4. M A S T E R  H I E R A R C H Y  

Fluctuations in a dilute gas not in equilibrium have been studied 
frequently on the basis of a master equation. (36) We restrict ourselves here 
to the case of a spatially homogeneous system (37-39) in a volume ~2 but the 
considerations can be generalized to spatially inhomogeneous systems as 
well. (2~176 We are interested in particular in the analogy between the 
hierarchy method discussed in Section 2 and the master equation studied in 
this section. For this purpose we develop here a master hierarchy starting 
from the master equation in velocity space, just as we derived hierarchies in 
Section 2, from what was essentially the Liouville equation. 

Following Siegert ~43) we divide the velocity space of a single particle in 
a number of discrete cells labeled by a Greek index a,/3 . . . . .  If N~ is the 
number of particles in cell a, then the basic quantity we consider is the 
conditional probability P(NtlN't '  ) for finding the set of occupation num- 
bers N = (N~, N B, . . .  ) of the cells at time t, given the set of occupation 
numbers N '= (N~,N~ . . . .  ) at time t'. e(NtlN't ' )  satisfies for t >  t' a 
master equation of the form 

~P(Nt[N't') 
_ 1 E w~ys[Ed-lEflErE~ - 1]NyN~P(Nt[N't') (4.1) 

Here (1/2f~)w,r ~ is the transition probability per unit time for a 
binary collision between particles with initial velocities (%, v~) in cells ` /and 
8 and final velocities (v~, v~) in cells a and/3, w~r is symmetric for the 
interchange of the indices a and /3, the indices Y and 8, and satisfies 
microscopic reversibility, i.e., w~r is also symmetric in the pairs of indices 
a/3 and -/6. The step operator E is defined by Ej(N~) = f(N~ + 1) and 
satisfies the relation 

g(N)Ef (N)  = ~ f ( N ) E - I g ( N )  (4.2) 
N= O N=O 

for any functions f and g, if either g(0) = 0 or f ( -  1) --- 0, conditions that 
are always fulfilled in our applications. 
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For a given initial condition P(N', 0), the one-time probability distribu- 
tion to have the set of occupation numbers N at time t is then 

P(Nt)  = P(NtIN'O)P(N'O ) (4.3) 

while the two-time probability distribution function for N at t and N' at t' is 

P(Nt, N't') = P(Nt I N' t')P(N' t' ) (4.4) 

Since the master equation describes a Markov process, P(Nt IN ' f )  suffices 
to calculate all multitime probability distributions. 

In order to exhibit the analogy with the hierarchy method we derive 
here first from the master equation hierarchy equations for the moments of 
e(Nt):  the one-time distribution functions (N~(t)), (N~(t)N~(t)), etc., 
which correspond to the one-time distribution functions f(1 t), f(12t), etc., 
of Section 2, as well as for the moments of P(Nt, N't'): the two-time 
distribution functions (N~(t)N.(t')), (N,(t)N~(t)Nx(t')) , etc., that corre- 
spond to the two-time distribution functions f(lt ,  l 't '), f(12t, l 't '), etc., of 
Section 2. 

To derive the master hierarchy for the one-time distribution functions, 
we multiply Eq. (4.1) by N~,, N,N~2 . . . .  and sum over all N to obtain in 
general for the s-cell distribution function the equation 

d --~(N~,N~, . . .  N~) 

_ _  - 1  - 1  ~ . 1 E w~Bv*(NvN~[E* Ev E~E B lINeN,2 . .  N~+,) (4.5) 
2s ,~,e~,8 

In obtaining this equation, we have used Eq. (4.2) so that on the right-hand 
side of Eq. (4.5) the function P(NtIN't' ) is understood to be to the left of 
the E operators. Using the relations 

E v- IE a- 1E~EBN~ = N~ + A (4.6a) 

with 

A = 8., + 8r -- 8~, -- 8~. (4.6b) 

which follow directly from the definition of the E operators, the right-hand 
side of Eq. (4.5) can be further evaluated to yield the following hierarchy 
for the one-time distribution functions(43'38-40 : 

__d dt (N~(t)) -- k ~ w~sA~(Nv(t)Ns(t)) 

1 ( l + e . .  d (N,(t)N.(t)) = ~ ~] w~v, )A,(Nv(t)N,(t)N.(t)) (4.7) 
abe8 

+ k ~ w"~vsA"A"(Nv(t)Ns(t))' etc. 
aflv8 
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The hierarchy for the two-time distribution functions (N~(t)Np(t')), 
etc., can be obtained in a similar fashion using (4.4) and (4.1). The result is 
identical to (4.7) except that the one-time distribution functions 
(N~( t ) . . .  >, etc., should be replaced by corresponding two-time distribu- 
tion functions (N~( t ) . . .  Np(t')>, etc., containing the additional Np(t'). 
These distribution functions have been considered by Malek-Mansour et 
al. (41) for the case of thermal equilibrium. 

As in Section 2 we can introduce correlation functions ( . . - ) c ,  or 
cumulants as they are usually called in this context, instead of the distribu- 
tion functions ( �9 �9 �9 >. They are defined by 

(N~NB> = (N~>(N~> + (N~N~> c 
(4.8) 

(N~NBN~> = (N,>(NB>(Nv) + (N,>(N/~Nv> c 

+ + <N ><NoNB}c 

+ <N,~N,~Nv> ~, etc. 

for the one-time correlation functions and similarly for multitime correla- 
tion functions. As in Section 2, the two lowest multitime correlation 
functions are simply related to the correlation functions of time-dependent 
fluctuations: 

(rN~(t)rN~ (t')~ = (N~(t)N~ (t')>~ (4.9) 

(rN~(t)rN~ (t')rNv(t")> = (N~(t)N/3 (t')Nv(t")~ c 

where 8N~(t) = N,(t) - (N~(t)> is the fluctuation of the number of parti- 
cles N~(t) in cell a at time t. The time arguments in (4.9) may be equal or 
different. 

Using (4.8) and (4.9) in (4.7), the following hierarchy for the equal time 
correlation functions, analogous to (2.15) is obtained: 

__d dt (N~(t)> = -~ ~ w~Br~A~[(Nv(t)><N~(t)> + (rNr(t)6Ns(t)>] 
a~v6 

(4.10a) 

d (6N~(t)rN~(t)~ 
dt 

_ 1 ~ w~/~v~(1 + P~)A~[(1 + Prs)(Nv(t)~(rN~(t)rN~(t)) 

+ (t)SN.(t)) ] 

+ 2~ ~ w~v~A~A~[(Nv(t)>(N~(t)> + (rNy(t)rN~(t) >] ,  etc. 
aflr~ 

(4.lOb) 

In a similar manner one finds for the two-time correlation functions the 
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hierarchy 

d_d (6N~(t)dN,(t')~ 
dt 

_ 1 Z w-&sA~(1 + Pv~)(Nr(t)X6N~(t)3N,(t') ~ 

+ -~ ~, w,&,A(dNv(t)3Ns(t)dN,(t')>, etc. (4.11) 
aflv8 

Like the hierarchies (2.15) and (2.16) in Section 2, the hierarchies (4.10) and 
(4.11) consist of sets of coupled equations and in order to solve them, they 
have to be decoupled. This can be done on the basis of the observation that 
each cell in velocity space contains a large number of particles, so that it 
seems reasonable to assume that (3N~(t)SN,(t')~ as well as all the higher 
correlations ( �9 �9 , )c are proportional to the volume f~ of the system. ~44'38) 
Then the terms on the right-hand side of the hierarchies (4.10) and (4.11) 
can be ordered in powers of f~ and the equations can be decoupled and 
solved by using an expansion in powers of f~-1.(40,44-46) For the one-time 
correlation functions one obtains to leading order in f~ for % ( 0  = (N~(t)~ 
/~2 the equation 

1 d = (t) (4.12a) 
a/3v~ 

or with Eq. (4.6b) 

d 
d-~ /~v8 

= ~ To(v~vt~)cGq~ ~ (4.12b) 
B 

where the binary collision operator To(GV~) is defined for an arbitrary 
function h(v~vB) by 

To(v~vB)h(GvB) = ~w~&~[ h(v~v~) - h(v~v~) ] (4.13) 
~6 

Equation (4.12) is the nonlinear Boltzmann equation in discrete velocity 
space in the spatially homogeneous case and the analogue of Eq. (3.2) 

Similarly an equation for the one-time correlation C~,(t,t) can be 
obtained from Eq. (4.10b) by collecting the terms of leading order in ~2, i.e., 

d + = �89 Z [ -d-i L~(t) ]C~,(t,t) ~&~ 

= F . , ( t )  (4 .14)  

Here we have defined in general 

Cff~(t, t') = ~ (6N,(t)dN~(t')) 
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and L#(t) is the Boltzmann collision operator, linearized around the solu- 
tion %(t) of Eq. (4.12) and defined for an arbitrary function h~ by 

1 
a/~v6 

= E + (4.15) 

The equations (4.12) and (4.14) describe together the equal time fluctua- 
tions in the occupation numbers of the velocity cells in the spatially 
homogeneous case and are the analogs of the equations (3.2) and (3.5), 
respectively. 

For the unequal time correlation function C~(t, t') one obtains in a 
similar fashion from Eq. (4.11) to leading order in a the equation for 
t >  t': 

--~ + L,(t ~(t,t') = 0  (4.16) 

which is to be solved with the initial condition C,,(t, t), in complete analogy 
with Eq. (3.9). 

We note the formal analogy between the classification in terms of the 
volume ~2 of the master hierarchies (4.10) and (4.11) in this section and the 
classification in terms of the density n of the hierarchies (2.15) and (2.16) in 
Section 2. For, in this section we neglected the equal time correlation 
function (rNv~N~) in the Eqs. (4.10a) since it is of relative order f~-I 
compared to (Nv)(N~), while we neglected the correlation function g(12t) 
in Eq. (2.15a) since it was of relative order n compared to f(lt)f(2t). 
Similarly in Eqs. (4.10b) and (4.11) the equal or unequal time correlation 
functions (~Nr~NeSN~) were ignored since they were of relative order a -1  
compared to (NT)(rN~SN,), while in Eq. (2.15b) g(123t) was ignored, 
since it was of relative order n compared to f(3t)g(12t). 

We now compare the results derived in this section on the basis of a 
master equation for fluctuation correlation functions with those obtained in 
the literature. As easly as 1962 Ludwig (2~ discussed equal time fluctuations 
in/x space for a dilute gas not in equilibrium. His considerations were based 
on a master equation for the probability distribution of occupation num- 
bers of cells in/~ space. Onuki (21) derived from the Klimontovich hierarchy 
a master equation in continuous/~ space variables instead of discrete labels 
a and from this the equal time hierarchy (2.15) with binary collision 
operators for a smooth- rather than a hard-sphere potential [cf. (3.11)]. 
Unequal time correlations of/~ space fluctuations in thermal equilibrium 
were derived by Seeberg, (4~ Malek-Mansour et al. (411 and van den Broeck 
and Brenig. (42) Their methods are essentially/~ space versions of what was 
presented here in velocity space. 



Nonequilibrlum Fluctuations in F Space 169 

Equal time correlations of fluctuations in cells in velocity space have 
been studied for a dilute gas in equilibrium or nonequilibrium by Van 
Kampen O7) and Kac and Logan. (38'39) By scaling the fluctuations 6N~ with 
~2-'/2 a Fokker-Planck equation is derived from the master equation in 
leading order in f~-l, from which equal time correlations of fluctuations 
can be calculated. As shown in Appendix D, the results obtained in the 
literature are all equivalent to those derived here except for Ref. 39, where 
the expression corresponding to F~,(t) agrees in the nonequilibrium case 
with ours only for/~ ~ p.9 

5. THE FLUCTUATING BOLTZMANN EQUATION 

Kinetic and hydrodynamic equations with fluctuating terms, analo- 
gous in form to the Langevin equation, (47) have been derived by many 
a u t h o r s .  (48-55'9'31'38'39'14) They have been used to describe fluctuations 
around the average behavior of the system inside or outside thermal 
equilibrium. We will sketch here how a fluctuating Boltzmann equation of 
the Langevin type can be obtained and used to derive equal and unequal 
time fluctuation correlations in/~ space. In the case of thermal equilibrium, 
fluctuations are assumed to be described by the macroscopic regression 
equation, i.e., the Boltzmann equation linearized around thermal equilib- 
rium with a random force added. The force is defined by giving its 
statistical properties. (49'5~ Away from equilibrium the macroscopic re- 
gression equation for the average state of the system is the nonlinear 
Boltzmann equation (3.2). The fluctuations l~ 6~(1 t) = ~(1 t) - f(1 t) around 
this average state are described by a Boltzmann equation linearized around 
the solution f ( l t )  of (3.2) with a random force S( l t )  added. (48'9'53'21'14) In 
general one has then 

~6~b(lt) 
Ot + L ( l t ) & p ( l t )  = S ( l t )  (5.1) 

where L ( l t )  is defined by Eq. (3.4). The random force S( l t )  is determined 
by its correlations, which in turn are assumed to be completely determined 

9Our expression (4.14) contains the term 6u~Bvw~#r(%r + q0~%), which is missing in 
Kac and Logan, (39) so that their result does not reduce to the proper equilibrium expres- 
sion.(38,49,50) 

l~ fluctuations &p(lt) have to be interpreted in a coarse-grained sense, where the 
short-wavelength Fourier components of the microscopic &p(lt), defined in Section 2, are 
neglected. As a consequence, the averaging ( . . .  >(0) in Eq. (5.2) is over the short- 
wavelength Fourier components of 6~(1 t). 
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b y  11 

and 

( g ( l t ) )  (~ = 0 (5.2a) 

(S(1 t )S(2t ' ) )  (~ = F(12t)8(t - t') (5.2b) 

i.e., S(1 t) is assumed to be Gaussian white noise. The average ( �9 �9 �9 )(0~ in 
(5.2) is a phase space average constrained by a fixed initial value ~(10). 12 
Once F(12t) is known, one can calculate the pair and all higher correlation 
functions of 8q~(1 t) at equal or different times. (47~ We will illustrate this first 
and later determine the actual form of F(12t). Thus we formally solve Eq. 
(5.1), leading to 

8~(l t)  = Gl(t,0)6~(10 ) +footd~'Gl(t,z)g(l'r) (5.3) 

where the Green's function Gl(t, t') satisfies for t > t' the equation 

3_ Gl(t ' t') = L(lt)Gl(t, t') (5.4) Ot 
with the initial condition G~(t,t)= 1. C(lt,2t') defined in Eq. (2.13) can 
then be found with Eqs. (5.3) and (5.2). In order to use (5.2) one has to 
perform the average ( . - . )  in two steps: first an average ( - - . ) ( 0 )  at 
fixed ~(10) and then an average over if(10). For comparison of the results 
obtained with this Langevin-Boltzmann method with those derived on the 
basis of the hierarchy method in Section 2, we differentiate the resulting 
C(1 t, 2t') with respect to time, yielding for equal times t' = t, 

[~t +L( l t )+L(2 t ) ]C( l t ,2 t )=F(12 t )  (5.5) 

and for unequal times t' ~ t, 

[ ~ t  + L ( l t ) ] C ( l t , 2 t ' ) = O  (5.6) 

where the initial condition for Eq. (5.6) is given by the solution of Eq. (5.5). 
An expression for F(12t) is not given by the theory but has to be found 

from elsewhere. In equilibrium the fluctuation-dissipation theorem has 
been u s e d  (49'50'56) to yield Eq. (3.6). Outside equilibrium an explicit expres- 
sion for F(12) has been obtained on the basis of phenomenological argu- 

~1 If one is only interested in C(1 t, 2t') one can relax the conditions (5.2) on S(I t) considera- 
bly, as has been by Lax, (57) Akcasu, (46) and Kirkpatrick et al.(14): S( l t )  need not  be 
Gaussian and the restricted averages ( - �9 �9 )(0) in (5.2) can be replaced by the full average 
( . . . )  over the initial ensemble provided one assumes in addition that ( f f ( 1 0 ) S ( l t ) ) =  0 

for t > 0. 
J2See footnote l0 above. 
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ments (48'53)'13 or by simply employing Eq. (5.5) as a definition of F(12t) and 
calculating the equal time correlation function C(lt,2t) on the left-hand 
side of this equation by one of the methods discussed in Sections 3 and 4. 

This last procedure has been described in Refs. 36 and 38-40, using 
the master or Fokker-Planck equation; in Refs. 9, 31, and 14, using kinetic 
methods and in Ref. 21 using the Klimontovich hierarchy. Kirkpatrick et 
a/. (14) employed the equal time hierarchy discussed in Section 3, and the 
fluctuating Boltzmann equation is used only to express the unequal time 
correlation function C(lt, 2t') in terms of the equal time correlation func- 
tion C(lt,2t) by means of Eq. (5.6). 

The explicit expressions for F(12t) found in the literature vary widely 
in appearance; we will discuss their equivalence in Appendix D. We note 
that many more assumptions had to be made in this Langevin method than 
in the hierarchy or master equation method. In the hierarchy or master 
equation method all properties of the fluctuations were contained in those 
of the correlation functions and only assumptions concerning these average 
quantities were needed. In the Langevin method, on the other hand, 
additional assumptions are necessary concerning the statistical properties of 
the fluctuating force, i.e., S(1 t) is a random-Gaussian process with correla- 
tion strength I'(12t). In fact, in nonequilibrium the correlation of the 
fluctuating force or equivalently F(12t) is not determined within the theory, 
but is usually (9'14'21'31'36'38-40) simply defined through the left-hand side of 
Eq. (5.5). Of course, any extension of this approach to higher densities will 
involve even more assumptions. 

Apart from these rather ad hoc ways of obtaining Langevin-type 
equations for # space fluctuations, Mori (51) has introduced a projection 
operator method through which equations of motion for microscopic densi- 
ties such as ~( l t )  in Eq. (2.1) can be cast in the form of a Langevin-type 
equation. The correlation function for the random force in this equation is 
given by a formal expression. This method has been applied to fluctuations 
in /~ space by Mori and many others (52'54,59'6~ but only for equilibrium 
fluctuations an explicit expression for F(12t) has been given for the case of 
a dilute gas with which we can compare our result (3.5b). 

APPENDIX A 

The time evolution of the ~b functions in the case of hard spheres is 
generated by pseudo-streaming operators. (2) These are defined for forward 

13Kadomtsev(48) gave already in 1957 Eq. (5.1) for a nonequilibrium gas, where the correla- 
tion strength for the random force was given by I'(12t)= -[A(lt)+ A(2t)]6(1- 2)f(lt). 
This result is only correct for the case of thermal equilibrium, as can be seen from Eqs. (3.5) 
and (3.6). 
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and backward streaming in time by 

q,(lt) = exp[ts (X ~ )]t)(1,0) (t > 0) (A.la) 

and 
~(l t)  = exp[ t~_ (xN)]q,(I ,0) (t < 0) (A.lb) 

respectively, and similarly for ~b(12t), etc. The pseudo-Liouville-operators 
s177 are given by 

N N 

~+- (XN) = 2 Lo(xi) + 1 i=, - ~ • 2 T + - ( X i X j )  (A.2) 
iv~j 

with binary collision operators 

T+ (XlX2)= o2 f d6lV,2 �9 ~10(u ~)8(R12- oO)(ba - 1) (A.3) 

Here O(x) is the unit step function and capital variables refer to F-space 
variables. The operators exp(ts ) generate the physical trajectories in F 
space either in the forward or backward direction starting from physical 
initial positions, in which hard spheres are not overlapping. These stream- 
ing operators also generate unphysical trajectories for unphysical, i.e., 
overlapping, initial conditions. However, we need only to consider here the 
following type of averages with t, t', t" > 0: 

f ( l t )  = (ff(lt))  = ~N f d X l  " " " d X N  D(X,  . . . XN,O ) 

x exp[ te+ (X N )]+(1,0) (1.4) 
f ( l t ,  l 't ') = (~(lt)qJ(l ' t ')) 

= f d X , . . . d X N O ( X l . . . X u , O )  

•177  - t ')~+(xN)]~J(1,O) (A.5) 

f ( l t ,  l't', l"t") = (qJ( l t )~( l ' t ' )~ ( l ' t " ) )  

= f d X l  . . . d X N D ( X ,  . . . XN,0)exp[ t"E• (X  N ) ]~(1",0) 

• exp[(t' - t")E+ (X  N )]qJ(l',0) 

X exp[(t - t')s (X  N )]~b(1,0) etc. (A.6) 

The + or - sign on E• has to be chosen, depending on whether the sign of 
the preceding time difference is positive or negative, respectively. 

Therefore, inside these averages (A.4)-(A.6) the unphysical overlap- 
ping initial configurations have a vanishing weight D(X N, 0), SO that only 
physical trajectories occur inside the averages. 
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In order to derive the equations of motion for the distribution func- 
tions defined in (A.4)-(A.6) we start from the equation 

~(1~-) 
3~. - E_+ (X ~ )exp[ ~-~+ (X u )] t)(1,0) (A.7a) 

= - L0(1)~(l~- ) + f d 2  f ;  (12)~p(12~-) (A.7b) 

where the upper and lower signs refer to ~- > 0 or r < 0, respectively. This 
equation can be derived using that due to the presence of &functions in the 
definition (2.1), the operators L 0 and T+ can be made to act on the field 
variables xlx 2 . . . . .  instead of on the F-space variables X1X 2 . . . . .  so 
that 

T+_ ( X i X j ) ~ ( X  i - x I ) ~ ( X  J. - x2) = T~_ ( x I x 2 ) ~ ( X  i - x1) (~(X j - x2) (A .8 )  

This is equivalent to taking the Hermitian adjoint, (T+) t  = T~_, as shown 
in Ref. 2. In (A.8) 

T z (x,x2) -- T~_ (12) 

= o2f  d~lVl2 �9 O10(~..~-u ~) (6 ( r12-  o~)bs -6(r12 + o~)} (A.9) 

The equation of motion (A.7b) is the first of a hierarchy with ~" -- t, i.e., 

[ ~ t  + s176 ]~ ( l t )  

[ ~ t + E 0 ( 1 2 ) - 7 - T ~ ( i 2 ) } f f ( 1 2 , )  

= +_fd2 f; (12)~(12t) (A.10) 

= + f  d3(1 + el2)f= (13)~(123t), etc. 

where the upper and lower signs refer to t > 0 and t < 0, respectively. For 
t > 0 we obtain the Klimontovich hierarchy (2.2) for the special case of 
hard spheres. To derive the equations of motion for the two-time distribu- 
tion functions (2.8), we use Eq. (A.7a) with ~-= t -  t' in (A.5) with the 
result: 

[~ -~+  Lo(1) J f( l t ,  l't') = +_ f d2 T~_ (12)f(12t, l't') 

__.f d3 (1 + e,2)r ;  (13)/(123, l'C), etc, 

where the upper and lower signs refer to t > t' or t' < t, respectively. In 
Section 2, Eq. (2.10) we have quoted only the result for t > t'. The 
hierarchy for the three-time distribution functions follows from (A.6) and 
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(A.7a) with z =  t - t '  and has exactly the same form as (A.11), only 
f(1 . . .  t, l ' t ' )  is replaced by f(1 . . .  t, l't ', l"t").  

APPENDIX B: FLUCTUATIONS OF A TAGGED PARTICLE 

The hierarchy method discussed in Sections 2 and 3 can be directly 
extended to self-correlations or the two-time distribution functions f~(1 t, 
l 't '), f~(12t, l 't '), etc., of a tagged particle in a gas. These self-distribution 
functions are defined by 

N 
L (  l t '  l t t t )  = ( Z ~ ( X i ( t ' )  - x])d(Xi( t )  - x , ) )  

i=1 
N (B.1) 

f~(12/, l' t') = ( ~ 8( Xi( t' ) - x~)6( Xi( t ) - Xl)6( Xj( t ) - x2) ), etc. 
i-~j 

The hierarchy for the functions f~(lt, l 't '), etc., reads for t > t' [cf. Eq. 
(2.1o)1: 

[ ~ t  + L0(1 ) ] f~(1 t, l ' t ' )  = f d2 T_ (12)f~(12t, l ' t ') ,  etc. (B.2) 

We can introduce correlation functions by the relations [cf. Eq. (2.12)]: 

fs(l t ,  l ' t ' )  = Cs(lt,  l ' t ' )  
(B.3) 

f~(12/, l 't ') = f (2 t )Cs ( l t ,  l ' t ' )  + Cs(12t, l ' t ') ,  etc. 

For distances r12 >> ff the binary collision operator T can be replaced by 
the point operator T and for low densities Cs(12t, l ' t ' )  can be neglected on 
the right-hand side of Eq. (B.2), so that one obtains the following equation 
for Cs(lt,2t'): 

[ -~t + Ls( l t )  lCs( l t ,2 t ' )  = O (B.4) 

where 

Ls(l t  ) = L0(1 ) - As(It ) 
(B.5) 

As(It ) = f d3 7~(13)f(3t) 

The equation (A.4) has to be solved with the initial condition 

Cs(l t ,2 t  ) = 8(1 - 2 ) f ( l t )  (B.6) 

For fluctuations of a tagged particle in a gas in equilibrium f(1 t) is given by 
the Maxwellian velocity distribution function. 
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The results (B.4)-(B.6) agree with those obtained in Refs. 9, 34, and 
2714 for the nonequilibrium case. 

APPENDIX C: THREE-TIME CORRELATION FUNCTIONS 

As an example of how the hierarchy method can be used to compute 
multitime correlation functions, we will sketch here how the three-time 
correlation function C(lt,2t', 3t") can be obtained for a low-density gas 
not in equilibrium. 

As derived in Appendix A, we have for the three-time distribution 
functionf(lt,2t',3t") the equation (t > t' > t '): 

[-~+Lo(1)]f(l t ,  2t',3t")= ; d4T_(14)f(14t, 2t',3t") (C.1) 

Introducing cluster functions by the expansion [cf. Eq. (2.12)] 
f(lt,2t',3t") = f(It)f(2t')f(3t") + f(lt)C(2t',3t") 

+ f(2t')C(lt,3t") + f(3t")C(lt,2t') 
+ C(lt,2t', 3t") (C.2) 

and similarly for f(14t, 2t', 3t") (where in addition to C functions, a g(14t) 
function appears), one obtains the following equation for the three-time 
correlation function C(1 t, 2t', 3t") = (8~(1 t)8~(2t')&p(3t")): 

[ ~ / +  L (1 ,  t ) ] C ( l t , 2 t ' , 3 , " ) =  f d4 T_ ( 1 4 ) ( 1 +  PI4)C(lt, 2t')C(41,3I") 

+ f d4T_(14)C(14t,2t',3t") (C.3) 

where L(1,t) has been defined in Eq. (3.4). In Eq. (C.3) only connected 
terms appear, as discussed below Eq. (2.16). 

We now solve this equation for C(lt,2t',3t") in the low-density 
approximation and for relative distances r12 , r13 , and 1"23 large compared to 
a. As before, we drop the last term on the right-hand side of Eq. (C.3) and 
replace T_ operators by 7 ~ operators. Equation (C.3) can then be solved for 
C(1 t, 2t', 3 t ' )  in terms of the initial value C(1 t, 2t, 3t"), which still has to be 
determined. Generalizing thereto equations like (2.12) and (2.14) to three- 
time distribution and correlation functions, one has 

C(lt,2t,3t") = 8(1 - 2)C(2t,3t") + C(12t,3t") (C.4) 

I4In Ref. 12 the equation for Cs(l t, l't'), which corresponds to (B.4), contains L(I t) as given 
by Eq. (3.4) instead of Ls(lt ). This would imply that f~(12t, l ' t ') in Eq. (B.3) contains an 
additional term f(lt)Cs(2t, l ' t ') on the right-hand side, which is not consistent with the 
cluster property of Cs(12t , l't'). 
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We can now compute C(12t,3t")) in (C.4) as a function of t or t". For a 
comparison with the results obtained by Dufty (35) we will use t". Thus we 
need to consider the equation of motion for f(12t, 3t") as a function of t". 
Since t " <  t we have to apply the "backward" hierarchies derived in 
Appendix A, the first equation of which reads [cf. Eq. (A. 11)] 

[Oc" + Lo(3)]f(12t,3t") = - f a4•+ (34)f(12t, 34t") (C.5) 

By expanding f(12t,3t"), f(12t, 34t") . . . .  in the appropriate Ursell func- 
tions, neglecting the correlation function C(12t, 34t"), and replacing T+ (/j) 
by 7~(/j), 15 we obtain 

(O r, + L-(3t"))C(12t,3t") = - f  d4 7~(34)(1 + P34) C(lt,3t")C(2t,4t") 
J 

(C.6) 

where [cf. (3.4)] 

L - ( 3 / " )  = L0(3 ) + f d4 7~(34)(1 + P34)f(at") (C.7) 

This equation has to be solved with the initial value: 

C(12t",3t") = 8(1 - 3)g(23t") + 8(2 - 3)g(13t") + g(123/") (C.8) 

We emphasize that like in the discussion of Eq. (3.5) before, in general 
g(123t") has to be kept in Eq. (C.8). To complete the calculation one has to 
compute g(123t") from the third hierarchy equation, which can be done in 
a straightforward manner and leads to an expression for g(123t") in terms 
of f(it) and g(ijt) (i, j = 1, 2, 3). We will not give the result here, since it is 
rather lengthy. In the special case of thermal equilibrium, the equal time 
correlation functions g(12) and g(123) vanish in the low-density limit for 
spatial separations of interest here, so that C(12t",3t")= 0. Then formal 
integration of Eq. (C.6) with the initial condition C(12t", 3t") = 0 yields an 
expression for C(lt, 2t, 3t") which can serve in turn as an initial value for 
the low-density approximation of Eq. (C.3). After a formal integration of 
this equation an expression for C(lt,2t',3t") in equilibrium is obtained 
which agrees with that derived before by Dufty [cf. his Eq. (3.10)]. (35) 

APPENDIX D: COMPARISON OF EXPRESSIONS FOR F(12t) 

For the inhomogeneous term F(12t) in Eq. (3.5) four different expres- 
sions occur in the literature. In this Appendix we will show that they are all 

15After onereplaces both 8 functions in (A.9) by 8(r12 ), T~ (12) reduces to T(12) defined in 
(3.1). In T(12) there is no difference between forward and backward any more, since the 
integrand is an even function of 8. 
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identical. With slight modifications these expressions are the following: 

1. I'l(12t ) = - [A( l t )  + a (2 t ) ]8(1  - 2 ) f ( l t )  

+ 8(1 - 2 ) f d 3  T(13) f ( l t ) f (3 t )  + T ( l Z ) f ( l t ) f ( 2 t )  (D.1) 

was obtained as Eq. (3.5b) in this paper as well as by Kirkpatrick et al. (14) ; 

2. F2(12t ) = 3(r 1 - r2) ( f  dv~f dr'2 W(viVztV~V'2)[f(l't)f(2't)+ f ( l t ) (2 t ) ]  

"[" "(V 1 - -v2) fdv3fdV' l  fdv#3 W(VlV 3 , v{v~t)[ f (1 t t)f(3't) + f(l t)f(3t)] 

-- f dv3 f du f dv#3( 1 -]- P,2)W(VlV3 [ V'lV;)(1 "}- Pl3)f(l#t)f(3tt)c~(Vl - v2) } 
(D.2) 

was obtained by Ludwig (2~ and Logan and Kac(38'39)'17; 

3. �89 fdTfa fdl'f 2'A(T , 
(D.3) 

was obtained by Seeberg, (4~  (21)'18 van Kampen,  (37~ and 
Spohn(3~ ; 

4. I"4(12/" ) = - - (~(r  i -r )fav favbCav; w(viv  Iv',v;) 

X [ f(l 't)f(3't) + f(1 t)f(3 t) ]A(v2) (O.4) 

was obtained by Keizer ~53) and van den Broeck and Brenig. (42)'17 In these 
expressions W(vlv21v~v;) is the transition probability per unit time for a 
binary collision with initial velocities (VlV2) and final velocities (viva); it is 
symmetric for the interchange of v 1 and v 2, v~ and v~, satisfies microscopic 
reversibility and is related through Eq. (4.13) to the binary collision 
operator T0(viva), introduced in Eq. (3.11). Furthermore, 

A (12 [ 1'2' ) = 3(r I - r2)a(rl - rl)3(r 1 - r~)W(VlV2 1 viv~) (D.5) 

16Ludwig has f(ijt) instead of f(it)f(jt). In view of Eq. (2.11), f(ijt) contains g(ijt), which for 
r i = rj = r I is of higher order in the density than f(i t)f(j t)  and should therefore be dropped. 

17van Kampen as well as Kac and Logan discuss fluctuations in discrete velocity space. For 
our comparison we change to continuous variables and consider therefore F(vff2t ) 
= ( 1 / V ) .  fdrlfdr2 F(12t). As noted already in Section 4, the term containing 6(v I - u  in 
(D.2) is missing in the expression of Kac and Logan, so that their expression for F(12t) does 
not reduce to the proper equilibrium value (3.6). 

Is f(ijt) occurs instead off(it),  f ( j t )  (see footnote 15 above). 
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and 

A(x,) = 8(x] - x;) + 8(x~ - x;) - 8(x 1 - xi)  - 8(x 2 - x;) (D.6) 

and similarly for A(vi). All f ( i t )  = f(rlvit ) are taken at the same position r I . 
We now show the identity of the four expressions for F(12t). Using 

Eqs. (3.1), (3.11), (4.13), and (D.5) which yield 

"~(12)h(12)=fdl'fd2'A(1211'2')[h(l'2')- h(12)] (D.7) 

for an arbitrary function h(12), as well as Eq. (3.4b), one obtains from (D.1) 

r~(12t) = f  dr f d2'A (1211'3')[ f(r)f(3') + f(1)f(3) ] 

+ S d3 fdl'yd3'X(1311'3')[ f( l ' ) f(3')+ f(1)f(3)]8(12) 

- f d 3 f d l ' f d 3 ' A ( 1 3 1  i'3')S(l')S(3')[8(l'2)+ 8(3'2)] 

Notice that the plus signs in the first two lines on the right-hand side of Eq. 
(D.8) originate not only from the last two terms on the right-hand side of 
Eq. (D.1) but also in part from the preceding terms. Carrying out the 
integrations over the position coordinates r'~, r~, r~, and r 3 leads directly to 
F2(12t ) of Eq. (D.2). In order to derive F3(12t ) we proceed as follows. We 
apply f dlf  d 2  8(11)8(22) to the first line of (D.8); f d l  8(11) to the second 
and third line of (D.8) and relabel 3, 3' as 2, 2', respectivdy; f dlS(2T) to 
the fourth line of (D.8) and relabel 2, 3, 2', 3' as 1, 2, 1', 2', respectively. 
Symmetrizing the resulting expression in primed and unprimed variables, in 
T and 2 and in 1' and 2', and using that A(12[ 1'2')= A(1'2'112 ), one 
obtains 

1 f dY faff l'fdzA(i l l'Z)IS(l',)S(z,)+ F3'(12t) = 7 

• A(xl)a(x2) (0.9) 

which is identical to F3(12t ) as given by Eq. (D.3). 
Finally F4(12t ) is obtained using that symmetries of the integrand on 

the ri_ght-hand side of (D.9) allow the replacement of A(xl)A(x2) by 
-48(11)A(x2) so that F3(12t ) can be written in the form 

F4,(12t ) = -- ;d3fdl';d3'A (13 [ i '3 ' )  [ f ( l '  t ) f (3 '  t) -I- f ( i t ) f ( 3 t )3A (X2 )  

(D.10) 

which reduces directly to F4(12t ) as given by Eq. (D.4). 



Nonequlllbrlum Fluctuations in V Space 179 

ACKNOWLEDGMENTS 

The authors are much indebted to Mr. T. Kirkpatrick for many helpful 
discussions, in particular, in connection with Appendix C. One of us (M. 
H.. E.) wants to thank the Rockefeller University for its hospitality during 
March 1980 when this paper was finished. 

REFERENCES 

1. M. H. Ernst and E. G. D. Cohen, in Studies in Statistical Mechanics, Vol. VIII, E. 
Montroll and J. L. Lebowitz, eds. (North-Holland Publishing Company, Amsterdam, 
1981). 

2. M.H.  Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen, Physica (Utrecht) 
45:127 (1969). 

3. Y.L. Klimontovich, Soy. Phys. JETP 6:753 (1958). 
4. J .J .  Hopfield and J. F. Bastin, Phys. Rev. 168:193 (1968). 
5. C. Cercignani, Trans. Theor. Star. Phys. 2:211 (1972). 
6. H. van Beijeren, O. E. Lanford, III, J. L. Lebowitz, and H. Spohn, J. Stat. Phys. 22:237 

(1980). 
7. V.V. Tolmachev, Soy. Phys. Dokl. 2:85 (1957). 
8. G.H.  Vinehard, Phys. Fluids 3:339 (1960). 
9. F .L.  Hinton, Phys. Fluids 13:857 (1970). 

10. B.B. Saleeby and M. B. Lewis, Phys. Fluids 14:1931 (1971). 
11. R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics (John Wiley & Sons, 

New York, 1975), Chap. 21. 
12. S. Tsug~ and K. Sagara, J. Stat. Phys. 12:403 (1975). 
13. M.H.  Ernst and J. R. Dorfman, Physica (Utrecht) 61:157 (1972). 
14. T. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. Lett. 42:862 (1979). 
15. M.S. Green, Physica (Utrecht) 24:393 (1958). 
16. M.N.  Barber, J. M. Blatt, and A. H. Opie, J. Stat. Phys. 13:379 (1975); J. M. Blatt and 

A. H. Opie, J. Stat. Phys. 13:385 (1975). 
17. Sh. M. Kogan, Theor. Math. Phys. (USSR) 10:94 (1972). 
18. T. Morita, H. Mori, and M. Tokuyama, J. Stat. Phys. 18:137 (1978). 
19. D. Ronis, I. Procaccia, and I. Oppenheim, Phys. Rev. A 19:1307 (1979). 
20. G. Ludwig, Physica (Utrecht) 28:841 (1962). 
21. A. Onuki, J. Stat. Phys. 18:475 (1978). 
22. I. Procaccia, D. Ronis, and I. Oppenheim, Phys. Rev. Lett. 42:287 (1979). 
23. T. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. Lett. 44:472 (1980). 
24. A .M.S .  Tremblay, E. D. Siggia, and M. R. Arai, Phys. Lett. 76A:57 (1980). 
25. M.H.  Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren, J. Stat. Phys. 

18:237 (1978). 
26. J . M . J .  van Leeuwen and S. Yip, Phys. Rev. A1:1138 (1965). 
27. W.R.  Chappell, J. Stat. Phys. 2:267 (1970). 
28. E . G . D .  Cohen and T. H. Berlin, Physica (Utrecht) 26:717 (1960). 
29. O. Lanford, III, Soc. Math. Fr. Asterisq. 40:117 (1976). 
30. H. Spohn, in Proceedings of the Colloquium on "Random Fields" (Esztergom, Hungary, 

1979). 
31. S.V. Gantsevich, V. L. Gurevich, and R. Katilius, Soy. Phys. JETP 32:291 (1971). 
32. M. Rostoker, Nucl. Fusion 1:1 (1960). 



180 Ernst and Cohen 

33. M.N.  Rosenbluth and N. Rostoker, Phys. Fluids 5:776 (1962). 
34. D. Montgomery, Phys. Fluids 12:804 (1969); see also Ref. 9 for a correction. 
35. J. Dufty, Phys. Rev. A 13:2299 (1976). 
36. N. G. van Kampen, in Topics in Statistical Mechanics and Biophysics," A Memorial to 

Julius Jackson, R. A. Piccirelli, ed., A1P-Conf Proc. 27:153 (1976); (American Institute of 
Physics, New York, 1976). 

37. N.G.  van Kampen, Phys. Lett. 50A:237 (1974). 
38. J. Logan and M. Kac, Phys. Rev. A 13:458 (1976). 
39. M. Kac and J. Logan, in Studies in Statistical Mechanics, Vol. VII, E. Montroll and J. L. 

Lebowitz, eds. (North-Holland Publishing Company, Amsterdam, 1979), p. 1. 
40. O. Seeberg, J. Stat. Phys. 4:83 (1972). 
41. M. Malek-Mansour, L. Brenig, and W. Horsthemke, Physica (UtrechO 88A:407 (1977). 
42. C. van den Broeck and L. Brenig, Phys. Lett. 73A:298 (1979); Phys. Rev. A 21:1039 

(1980). 
43. A . J . F .  Siegert, Phys. Rev. 76:1708 (1949). 
44. R. Kubo, K. Matsuo, and K. Kitahara, J. Star. Phys. 9:51 (1973). 
45. N .G.  van Kampen, Physica (Utrecht) 96A:435 (1979). 
46. Z.A. Akcasu, J. Star. Phys. 16:33 (1977). 
47. R.F .  Fox, Phys. Rep. 48:179 (1978). 
48. B.B. Kadomtsev, Soy. Phys. JETP 5:771 (1957). 
49. M. Bixon and R. Zwanzig, Phys. Rev. 187:267 (1969). 
50. R.F .  Fox and G. E. Uhlenbeck, Phys. Fluids 13:1893, 2881 (1970). 
51. H. Mori, Prog. Theor. Phys. 33:423 (1965). 
52. H. Moil, Prog. Theor. Phys. 49:1516 (1973). 
53. J. Keizer, J. Che~ Phys. 63:398 0975). 
54. M. Tokuyama and H. Mori, Prog. Theor. Phys. 56:1073 (1976). 
55. P.S. Lee and T. Y. Wu, Int. J. Theor. Phys. (GB) 7:267 (1973). 
56. H. Ueyama, Physica (Utrecht) 80A:98 (1979). 
57. M. Lax, Rev. Mod. Phys. 32:25 (1960). 
58. A.H. Kritz, G. V. Ramanathan, and G. Sandri, in Kinetic Equations, R. L. Liboff and N. 

Rostoker, eds. (Gordon and Breach, New York, 1971), p. 307. 
59. A.Z. Akeasu and J. J. Duderstadt, Phys. Rev. 188:479 (1969). 
60. A.Z.  Akcasu and J. J. Duderstadt, in Kinetic Equations, R. L. Liboff and N. Rostoker, 

eds. (Gordon and Breach, New York, 1971), p. 45. 


